
4 N65-12422 

I APPLICATION OF NON-LINEAR REGRESSION ANALYSIS 
i 

i A N D  OF ANALYSIS OF VARIANCE TO THE 
DETERMINATION OF PERIODS OF EVENTS DEFINED 

B Y  IRREGULARLY SPACED OBSERVATIONS 

s 

’ /  
i 
; GPO PRICE $ 

h OTS PRICE(S) $ 
by 

1. Jurkevich 
y-3 

Hard copy (HC) 

Microfiche (MF) dt 5 3  
I 

p r e p a r e d  for 

1 
1 N A T I O N A L  AERONAUTICS AND SPACE A D M I N I S T R A T I O N  

contract N A S w - 8 8 0  

SPACE SCIENCES LABORATORY 

G E N E R A L @  ELECTRIC 
MISSILE A N D  SPACE DIVISION 



NASW -880 

FINAL REPORT 

APPLICATION O F  NON-LINEAR REGRESSION ANALYSIS 

AND O F  ANALYSIS O F  VARIANCE TO THE DETERMINATION 

O F  PERIODS O F  EVENTS DEFINED B Y  IRREGULARLY 

SPACED OBSERVATIONS 

by 

I. Jurkevich 

Prepared for  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

November 2, 1964 

CONTRACT NASW -880 

NASA Headquarters 
Code SC 
Washington, D. C. 20546 

Space Sciences Laboratory 
Missile and Space Division 

GENERAL ELECTRIC COMPANY 
P.O. Box 8555, Philadelphia, Penna. 19101 



. 

TABLE O F  CONTENTS 

1. INTRODUCTION 

2. DETERMINATION O F  PERIODS -ITERATIVE HARMONIC 
ANALYSIS METHOD 

2 -1. General Considerations 
2-2. Formulation of the Problem 
2 -3. Formal Solution 
2 -4. An Alternate Approach-Differential Correction 

Scheme 

3. DETERMINATION O F  PERIODS-ITERATIVE ANALYSIS O F  
VARIANCE METHOD 

3-1. General Remarks 
3-2. 
3 -3. Auxiliary Relations 

Formal  Description of the Method 

A. 

B. 
C. Behavior of Component Variances S and S 

D. 

WG 
Relation Between DT, DBG, and D 

Limiting Values of the Period 2 2 
BG WG 

Location of the Origin, to 

4. TESTING O F  METHODS 

5. CONCLUDING REMARKS 

REFERENCES AND BIBLOGRAPHY 

Page 

ii  



SUMMARY 

The purpose of the present study is  to develop methods for  the 

determination of accurate periods of periodic events observed at irregular 

intervals of time. 

time ser ies  analysis developed for  equally spaced data becomes too restrictive 

when such spacing cannot be produced, and hence the need for methods 

applicable directly to unequally spaced ordinates. 

It i s  pointed out that the powerful theoretical apparatus of 

Among various approaches to the above problem, two were selected for 

The first of these is based on the detailed study a s  the most promising ones. 

iterative harmonic analysis of observations. The technique employed i s  

primarily concerned with the non-linear regression analysis of data. 

assumed that the residual sum of squares i s  a function of period and that the 

"best" estimate of the latter corresponds to the minimum value of the residual 

sum of squares. 

above condition. 

It is 

An iterative procedure is then employed to search for the 

The second method is based on the analysis of variance technique for a 

single variable. 

as to permit the partitioning of the total variance into two components each 

of which is a function of period. 

assumed to correspond to the minimum value of squared deviations measuring 

the variation within groups. 

required to search for  the appropriate minimum. 

This method requires that the data be grouped in such a manner 

The "best" estimate of the period i s  then 

As in the f i r s t  method an iterative procedure is 

Both methods were tested numerically against short runs of rea l  data, 

and found to work in principle. 

"analysis of variance" approach is preferable because it involves only the 

very basic aritametic operations resulting in significant economy and speed. 

However, to yield significant results the method requires that the available 

data record extend over several periods. 

analysis" approach yields useful results with data covering intervals not much 

longer than a full period. 

simplicity. 

F rom the computational point of view the 

On the other hand, the "harmonic 

This gain is  achieved a t  the expense of computational 
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Numerical testing confirmed most features claimed for these methods 

in the main body of the report. In addition, it was found that in practice the 

methods suffer from a number of difficulties such a s ,  the less  than adequate 

rate of convergence, occasional appearance of spurious periods, the problem 

of finding an optimum number of data groups, etc. 

been considered in detail. 

These problems have not 
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1. INTRODUCTION 

The present work i s  concerned with the problem of finding the period 

of a cyclic phenomenon which has been observed at  irregularly spaced 

intervals of time. 

problems dealing with the spectral analysis of an irregularly observed time 

series.  

literature. 

exclusively with techniques which a r e  applicable to observations equally 

spaced in the independent variable. 

many simplifications in the analysis, leading to theoretical elegance a s  well 

a s  to convenient computational schemes. 

This problem i s  a special case of a broader class of 

The subject in question i s  not one on which there is an extensive 

The existing works on the time ser ies  analysis a r e  concerned 

The approach based on this fact permits 

There exist, however, physical situations in which it is  either 

impossible o r  impractical to obtain observations at fixed intervals. 

of such a nature ar ise  whenever experimental conditions a re  at  least partially 

beyond the observer's control. In such cases,  even if it i s  intended to produce 

equally spaced observations, the observational technique itself may cause the 

interval to depart by'a large amount from i ts  desired value. 

condition is quite different from that which occurs in sampling of data sources 

in communication and automatic control systems in which the sampling 

mechanism introduces a small timing e r ro r  known as  "time jitter" (Balakrishnan 

1961 -62 ,  Brown 1963). 

Difficulties 

Note that this 

The latter condition is of no concern in this work. 

Consider now the problem of analyzing a time ser ies  which has been 

observed at  unequally spaced intervals. 

F i r s t ,  it  is natural to inquire into the possibility of utilizing the 

powerful theoretical apparatus of time series analysis developed for equally 

spaced data. 

In order to do this, one would have to replace actual observations by 

The subsequent a new set generated from the original one by interpolation. 

choice of one of the numerous existing techniques would depend primarily on 

the parameters to be estimated as well a s  on the computational means 

available. 
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For  the specific case under consideration, namely the period search, 

many such techniques were described by Stumpff (1937). 

approaches, not treated in the literature, the most natural one appears to 

be based on the representation of data by a trigonometric polynomial and 

subsequent utilization of non-linear regression analysis to determine the 

period. 

approach because under this condition trigonometric polynomials become 

orthogonal and as a result one achieves significant computational economy 

and speed. 

Among other 

Equal spacing of observations is of crucial  importance in such an 

However, one finds that the results obtained by the above procedure 

depend significantly on the type of interpolation formula employed in 

generating equally spaced data points a s  well as on the number of "manu- 

factured" points used. 

some problems, but in others such a s  those arising in astronomy it is highly 

disturbing. 

Wehlau, Leung, 1964) and yet it is accepted because i t  seems to be the best 

thing that one can do. For  the reasons stated above as well as the fact that 

automatic computers make the use of equidistant ordinates less  important, 

it seems desirable in certain cases  to abandon the existing methods of 

analysis, despite their convenience, and attempt to develop methods 

applicable directly to irregularly spaced observations. 

soon as the condition of equal spacing is disallowed, one loses all advantages 

which normally accrue f rom the fact such a s ,  

metr ic  functions. 

but numerical ones as well, particularly in cases  employing non-linear 

regression analysis. Consequently, any work in this a r ea  must be concerned 

with the development of practical computational procedures in order  to yield 

numerical estimates of the desired parameters. 

The degree of this sensitivity may not be serious in 

This situation is fully recognized (for the latest example see 

Unfortunately, as 

the orthogonality of trigono- 

One immediately encounters not only theoretical difficulties, 

The initial survey of possible ways of analyzing an irregularly 

observed time ser ies  for the presence of certain periods revealed two 

promising methods. The f i rs t  of these is  based on the "iterative harmonic 
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. 

analysis" of the data and the second one on the "iterative analysis of 

variance" approach. 

referred to a s  the "Iterative Harmonic Analysis Method" and the "Iterative 

Analysis of Variance Method". 

In subsequent discussions these two methods w i l l  be 

The remainder of this report is concerned with the details of these 

two methods. 
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2. DETERMINATION O F  PERIODS - ITERATIVE HARMONIC ANALYSIS 

METHOD 

2 - 1. General Consideration 

Quantities obtained by observation of periodic phenomena a re  the 

observed response (mechanical displacements, light intensity, number of 

sun spots, rain fall, etc. ) and the corresponding instants of time. 

pertinent to state that generally the precision w i t h  which these two quantities 

can be observed a re  vastly different. 

measured is orders  of magnitude higher than that of the other quantities 

mentioned above. 

of the Iterative Harmonic Analysis Method, presently under consideration. 

It is 

The precision with which time can be 

This observation has an important implication in the case 

A s  w i l l  be seen later,  this method relies heavily on the method of 

least squares for i ts  operation. For  this reason the observational data 

must satisfy the Gauss-Markoff theorem on least squares. Briefly this 

theorem consists in the following. 

of data can be used to estimate the best numerical value of a quantity even 

though e r r o r s  a r e  not necessarily the observational ones. Generally, the 

Gauss -Markoff theorem i s  concerned with linear estimation of parameters 

appearing in linear equations. 

Recall that the least squares adjustment 

Assumptions which must be satisfied are:  

(a)  Estimators of parameters of interest a r e  unbiased linear 

combinations of the observed values of the drawn sample. 

The "best" unbiased linear estimator is that one which minimizes 

the variance of the statistical variables (usually the observed 

quantity). 

restricted to any particular form. 

(b) 

The distribution l a w  of the observed quantity i s  not 

If the expected value of a variable i s  

E ( y . ) = b  t b  x t... t b k  x t . . . t b  x 
1 o 1 l i  ki n ni 
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then the sum of the squares of deviations s i s  given by 

where W. a re  known as weights. 

in a familiar set of equations known as  the normal equations. 

Minimization of the variance s results 
1 

A very important fact to note is that for the Gauss-Markoff theorem 

In must have known numerical values. 

In practice these coefficients a r e  known from 

The Gauss -Markoff 

xki to be applicable the coefficients 

fact, they must be e r r o r  free. 

observations and thus contain the e r ro r s  of observation. 

theorem i s  not applicable to this situation. It must be pointed out that the 

range of i ts  application can be stretched if  the coefficients are known with 

such accuracy that they affect the expectation of the variable y to a smaller 

degree than the standard deviation of any individually measured parameter. 

This condition w i l l  be satisfied as  long a s  the measurement e r r o r  of the 

independent variable is much smaller than that of the dependent one. 

Although, strictly speaking, the Gauss -Markoff theorem applies to 

linear parameter estimation, it continues to be valid in non-linear cases  p ro -  

vided the problem can be appropriately linearized. 

cussion assumes that such linearization can indeed be carried out. 

proceeding with the main discussion it w i l l  be useful to recall  that the normal 

equations resulting from the minimization of s have the following form 

The subsequent dis - 
Before 

where k = 0, 1, 2 , .  . . n; x = 1,  and the weights W. were set equal to unity. 

If the variables a re  measured from their respective means, equation 
oi 1 

(2 -3 )  transforms into a well-known form given by 
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b = y - b  Z -... - b  Z .  (2  -4) 
0 1 1  n n  

For  our purposes, it i s  immaterial which of these two forms i s  used 

for computation and, therefore, we shall limit ourselves to equation (2-3). 

In the above equations quantities % can represent either explicit 

independent variables o r  functions defined in te rms  of independent variables. 

2 - 2 .  Formulation of the Problem 

The periodic processes a re  most conveniently represented by trigono- 

metric sequences. 

description in terms of an approximating trigonometric sequence is obtained 

by deriving the appropriate Fourier coefficients of the sequence. 

to treat  such problems a re  well known. 

extracting a s  accurate a value of the period a s  the unequally spaced observa- 

tions w i l l  allow is much more difficult and has received little attention. 

If the period of the phenomenon is known, its analytical 

Techniques 

The converse problem, that of 

The numerical difficulties arising from unequal spacing a r e  com- 

pounded by theoretical problems associated with the fact the desired 

parameter - period - enters the regression equation non-linearly. 

Let it be assumed that the run of observations y.' a s  a function of 
1 

time t. can be represented by equation (2-5) 
1 
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I . -  

I .  

It i s  evident that yi, within our scheme, i s  not only a function of 

It should be clear that the time, but also of three additional variables. 

representation of the observations in terms of our model should improve 

with the number of terms retained in the sequence. 

If we had the correct values of T and t the problem would be reduced 
0 

to finding coefficients A , A , B by the straightforward application of the 

method of least squares. 

unanswered is the value of n. 

the function y(t) i s  given by an analytical expression, n can be taken arbitrari ly 

large. 

O P P  
Of course, a problem which normally remains 

In dealing with normal Fourier series where 

In our case, y i s  defined observationally at discrete points; therefore, 

one would expect that behond a certain value of n, coefficients A and B a re  n n 
unreliable due to a strong effect of observational e r ror .  

the sequence (2-5) must be terminated at  some n based on a suitable statistical 

test. 

This indicates that 

Such a test w i l l  be discussed later. 

In our case,  a further complication i s  the fact that T and t 

The quantity t 

a r e  known 
0 

but approximately. 

For  the purpose of determining the period, t 

can be considered free of observational e r r o r  and therefore left out of further 

consideration. 

obtained from a plot of the observations. 

determining the value of the period such that it i s  "best" in some agreed sense. 

represents the origin on the time axis. 
0 

is an arbitrary parameter which 
0 

A s  far a s  T i s  concerned an approximate value can always be 

Consider now the question of 

In the first  approximation the above problem can be approached a s  

follows. 

Fourier Series. The amplitudes of the various harmonics can be derived 

f rom observations by means of any suitable method such a s  the method of 

least squares. A complication in this approach i s  the fact that the period 

enters the regression expression in a non-linear manner and therefore the 

straightforward application of the least squares procedure w i l l  not directly 

yield the best value of the period. 

that in the neighborhood of the true value of the period the sum of the squares 

of deviations of the observed and expected values of the function in question 

Assume that the observed data can be represented by a truncated 

However, i f  one makes an assumption 
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should reach a minimum and furthermore that it behaves according to some 

reasonable power law, one has here the beginnings of an iterative scheme 

which should yield improved values of the period. 

Consequently to meet our objective it i s  necessary to implement an 

iterative computational scheme based on the regression analysis in which 

one of the parameters to be estimated occurs non-linearly. 

The desired procedure would involve the following steps: 

1. 

2. 

3. 

4. 

5. 

The regression expression assumed to represent the expected 

value of the observed variable is  a truncated Fourier Series. 

We start  with a constant te rm plus the f i rs t  harmonic. 

initial value of the period can be estimated from observations. 

Note that at  this point there a re  three coefficients to be 

estimated. 

Using the estimated value of the period, the coefficients a r e  

determined by the straightforward application of the method 

of least squares. 

The initial value of the period i s  improved by repeating the 

entire computation for suitably small increments in the period 

and searching f o r  that value of the period which results in a 

minimum value of the residual sum of the squares. 

Following this the second harmonic is added to the regression 

expression. 

variable i s  described by five unknown coefficients and the 

period which is to be further improved. 

the period obtained in 3 we again use the least squares method 

to obtain the coefficients in question. 

The iterative improvement of the period proceeds now according 

to the prescription given in 3. At the end of this computation 

one has at his disposal two values of the period; one resulting 

from the regression on the first  harmonic, the second from the 

regression on the first  and second harmonics. 

The 

At this point the expected value of the observed 

Taking the value of 

It should be 
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apparent that the representation of the data by the regression 

expression is not only a function of the period, but also a 

function of the number of harmonics included in the regression. 

However, since we are dealing with the observational data it is 

not possible to include arbitrari ly high harmonics in this analysis, 

because a t  some point the amplitudes of higher harmonics w i l l  be 

submerged in observational "noise 'I. 

The highest usable harmonic can be ascertained by means of the 

standard statistical technique of testing for the significance of 

added te rms  in the regression expression. The most common 

test  utilizes the well known F ratio. 

establish whether the addition of the second harmonic produced 

a significant improvement in the data representation. 

found that the improvement i s  not significant, the computation 

is discontinued and the last value of the period is taken as the 

best value in the sense of the least  squares. 

On the other hand should the improvement be significant, the 

third harmonic i s  added and the computations similar to those 

under 4 and 5 a r e  carried out. 

ascertain whether the addition of the third harmonic is significant. 

Depending on the result of this test  one either terminates the 

computation o r  proceeds to add the fourth harmonic, etc. 

6 .  

This tes t  is  then used to 

If i t  is 

7. 

The F test  is now applied to 

2 -3. Formal  Solution 

Let T denote an approximate value of the true period T. The index 
m 

m w i l l  denote the sequential order of t r ia l  values of T. 

T,  T1, can be obtained most readily from a plot of the observations. 

more,  select a suitable value o f t  . This value can be selected in a number 

of ways. 

of the physical system under study. 

of a separate computation. 

be written as: 

The starting value of 

Further-  

0 

It can be taken arbitrari ly,  o r  i t  may correspond to a specific state 

In the latter case to may be the result 

If now n is set equal to unity, equation (2-5) can 
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1 
y h .  9 T ,  1) = A. t Al cos 2 T ( t i  - t 0 ) / T 1 ]  
1 1  

Coefficients A , A1, and B a r e  obtained by fitting expression (2-6) to the 

data by the method of least squares. 

equation of condition, the normal equations can be obtained by the use of 

equation (2-3), in which we identify the following quantities: 

0 1 
Thus, i f  equation (2-6) i s  taken a s  the 

b = A  
0 0 

bl  = A1 

b2 = B1 

Employing these in (2-3) and writing out the result in matrix form, we have 

CA=CJ or 

12 

32 Y3 

2 where 

N,  with N representing the total number of 
c l l  = (t) 

ob s e rvation s 

(2 -7) 

10 



, 

= c21 = - 1 c cos [.. ( y o ) ]  
12 2 i  

1 - '13 = '31 - - 2 1  sin [2v ( f i r : O ) ]  

c22 = c i cos2 ('i 31 
'23 = '32 = i cos [2Tr('i;:o)] sin [.. ( y o ) ]  

c ~2 = c i y; cos [ 2n (yo)] 
c ~3 = i y i  1 sin [2v ( y o ) ]  

The coefficients A , A 1 ,  B are obtained by matrix inversion 
0 1 

A = C-'Cy 

or 

11 



i j  
Quantities C 

normal equations. 

diagonal terms a r e  related to the standard e r r o r s  of the estimated regression 

coefficients. 

estimates. In the above case,  these relations a re  a s  follows: 

a r e  elements of the inverted matrix of the coefficients of the 

The inverted matrix has a well-known property that i ts  

The off-diagonal elements a re  related to covariances of the 

SE (A 0 ) = 0 YF 
SE (A1) = 0 iF-- 
SE (B1) = 0 

2 12 
C cov (A A1) = 0 

0 

2 13 
cov (A B ) = (J C 0 1  

2 23 
C O V ( A  B ) = o C 1 1  

It i s  useful to keep in mind that, since the matrix of coefficients of 

the normal equations i s  symmetric, the inverted matrix must also be 

symmetric. Thus, 

i j  ji  
C = C.. andC = C . 

i j  J1 

2 
In equations (2-9) (3 

variance is generally not known a priori. 

i s  the e r r o r  variance of the observed y' values. The 

It can be estimated, however, 

12 



f rom the residual variation of the observed response y' about the values 

predicted by the regression relation. 

expressed in the notation of equation (2-3) i s  given by 

The residual sum of the squares 

... - bl xli 'iobs - 
2 2 

('iobs - 'icorn ) = c  i 'iobs - b o C Y  iobs 

where Yiobs = observed quantities 

= quantities computed from the regression equation 
Yicom A- 

/' 
A s  applied to equation (2-5), this becomes: 

2 
) = C  - A  C - A C  - B  C f ('iobs - 'icom YY 0 y l  1 y2 - 1 y3 

2 ... = v  . - 

For  subsequent analysis, it may be useful to recall that 

s 
i ('iobs 'icom 

- )' i s  known a s  the residual sum of squares and 

. . . - b x . y.) i s  known a s  the sum of squares 
n i  ni 1 

(b c Yi - bl 
Xli Yi - 0 1  

2 
due to regression. In terms of these two quantities, the estimate s of 

e r r o r  variance 0 
2 

i s  given by: 

(2-10) 

where N is the number of independent observations and p i s  the number of 

parameters estimated by least squares. 

If T and t used in (2-6) were known precisely, computation would 

essentially be completed by carrying out operations indicated in equations 

(2-7), (2-8), (2-9) ,  and (2-10). 

0 

13 



It should be clear f rom equation (2-5) that, for  a fixed value of 

)2 is a function of both T and t and, therefore, 
2 

'i c om 0 9 
L 

one would expect that for  proper values of these parameters,  the quantity v 

should reach a minimum. 
2 

which can be employed to minimize v . The reason for this is  that t serves 

merely as a reference point and, as such, remains in the present scheme as 

an arbi t rary parameter which is not subject to error .  

ways of obtaining a minimum of the function v (T). 

As pointed out ear l ier ,  it is only the quantity T 

0 

Let us now consider 
2 

The most direct approach to this problem is to assume that, in the 
2 

neighborhood of the true value of T ,  T , the quantity v (T)  can be represented 

by a quadratic function 
0 

2 
v (T)  = A  t 

This assumption is 

the moment, taken 

T w e  can w r i t e  
0 

2 
BT t CT 

based on the following simple argument. 

to be a function of T alone, then in the neighborhood of 

If y. is, fo r  
1 

F r o m  this expression we have 

2 
Thus, v (T)  has the postulated form, provided we set 

( 2  -1 1 )  

14 



Having obtained, in some manner, quantities A, B, and C, the point at 

which the minimum of v (T)  occurs is given by: 
2 

(2 -12) 

Approximate values of the constants A, B, C can be obtained either f rom 

their  defining expressions (2-11) o r ,  more directly, as follows: 

For  some start ing values T and t the trigonometric sequence 
1 0 

This computation also yields the quantity I 

1 
approximation to y. is computed. 

v (T1). 

T 3 ,  yielding the corresponding values of v (T  ) and v (T ). 

we have produced coefficients for a system of three equations in three unknown 

constants. 

2 
The above procedure is repeated twice for different values T and 2 

Consequently, 
2 2 

2 3 

This system is given by: 

V ~ = T A  
where: 

1 T  
T = ( 1  T2 1 

T 3  

The solution of these equations i s  given by: 

-I 2 
A = T  V 

15 



-I 
Explicitly, the inverse matrix T i s  given by 

T2 T3 T1 T3 T2 
(T3 - T1) (T3 - T2) 

- 
(T3 - T2) (T2 - T1) i 

Substituting the constants B and C in equation (2-12) w i l l  produce an estimate 

of T at  which the quadratic approximation to v 
2 

(T)  has a minimum. However, 

this is not the best minimum which can be obtained under the circumstances. 

To continue the process, the estimate of T just obtained is used to recompute 

the trigonometric approximation to y: and hence a new value of v (T)  is 

obtained. Hopefully, the fourth value of v (T)  i s  smaller than any of the 

three previously obtained values. Therefore, the largest v (T)  in the set 

of four available i s  discarded and the remaining three with the corresponding 

periods a r e  used to recompute A, B, C. Employing these in equation (2-12), 

a new and presumably improved value of the period T i s  obtained. 

of course, we produce an estimate of the corresponding v (T). This pro- 

cedure can, in principle, be continued indefinitely. In practice, several 

reasons conspire to force suspension of the iteration procedure. 

computers handling a fixed number of digits, the progressive loss of 

2 

l 2  

2 

In addition, 
2 

Firs t ,  in 

2 2 
eventually makes v significant figures in v insensitive to small changes 

in T. 

improvement in repre sentation ceases to be statistically significant. 

sequently, it  i s  necessary to employ some rules for  discontinuing the 

computation. 

procedure i s  described. 

Second, as the order of approximation to y! increases, the resulting 
1 

Con- 

In the following paragraphs, one possible version of such a 
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Note that for  any order of approximation n, the computation can be 

discontinued when either the period o r  the variance change by less  than a 

preset amount c . Furthermore,  in going from the approximation level 

n to the ( n t l )  level, two te rms  a r e  added, namely those describing the 

contribution of the next higher harmonic. 

to answer is whether the addition of these two te rms  contributes significantly 

to the description of the periodic process of interest. Such a decision can be 

made on the basis of the analysis of variance a s  follows: To ca r ry  out the 

analysis of variance, it is necessary that the results at two levels of approxi- 

mation be available. Thus, one has at  one's disposal the sums of squares 

due to regression on the f i rs t  (p-2)  variables and due to regression on the 

p and (p-1) variables. In addition, the residual sum of squares i s  

available. 

following table: 

st 

The question which one would like 

th s t  

Under these conditions the analysis proceeds according to the 

Source Sum of Squares Degrees of Mean Square 
Freedom 
(D. 0. F. ) 

5 P -(P -2) 5 12 
th 

Regression on p and 

(p - 1) variables 
st 

rl 
P -2 
- Regression on the rl P -2 

f i r s t  (p-2) variables 

N-p-1 c 
Residual c N-p-1 

Total C N-1 
YY 

L 4 

As an example, note that at the second approximation level, the 

quantities listed in the table a r e  given by: 
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The quantities 5 and f l  have two degrees of freedom. Furthermore, 

(2 )  c y'. sin 8. 
- A 1  i 1 1 - B l  i 1 1 

(2) c yl. cos e. / 2  1 (2) - - A  2 0  P =  F Y i  

c = s y i  1 2  
YY 1 

In the above, y'. 

constants determined in the regression analysis, N is the number of 

a r e  the observed quantities, p represents the number of 
1 

2n observations, ei = T ( t i  - t ), and superscripts indicate the order of 
0 

approximation. 

Returning now to the table, we note that the F-ratio for  the effect 

of added terms i s  given by: 

Now we make recourse to the table of critical F values computed for  

some desired probability level. 

texts on mathematical statistics. A hypothesis is made that there is no 

significant difference between the two variances; that i s ,  that the added 

te rms  contribute nothing to the description of the data. 

probability level, the computed F ratio is  smaller than the critical value, 

the hypothesis i s  accepted and the computation is discontinued. 

Such tables can be found in most standard 

If, for  the assigned 

Should the 
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computed value of F be larger  than the cri t ical  value, n is stepped by 1 and 

the computation is repeated in i ts  entirety. 

When the computation i s  discontinued, the corresponding value of T 

is taken a s  the final value of the period. 

deviation of the final value of the period i s  given by 

An estimate of the standard 

J C(Yiobs - 'icorn ) 2  
x 

C (N-2)  
0 

T (T 

The above expression is based on the following argument. 

for finding the minimum value of T ,  T , can be interpreted a s  being 

equivalent to a least squares solution with one unknown T . Here the 

The procedure 

0 

e quat ion 

- 
*'i = 'iobs 'icom 0 

0- 

(2-13) 

serves a s  the equation of condition which in turn yields 

2 2 
v (T)  = A  t BT t CT (2-14) 

2 
a s  the normal equation. 

of T given by 

The quantity v (T)  reaches a minimum for the value 

1 - I  
Here - can be interpreted as the inverse matrix c of equation (2-8). In 

this case this matrix contains a single element. 

e r r o r  of T 

C 
Consequently the standard 

can be written a s  
0 

Now 0 can be estimated from the residual variance by 
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3 

2 C(Yiobs - 'icom 1 "  
s =  

N-p-1 

where in the present case p w i l l  be qual to 1. Combining th se  two 

expressions we obtain 0 given earlier. 
=0 

The following remarks a r e  now in order  with regard to the proposed 

method. 

The fact that the observations are not equally spaced results in the 

loss of advantages which normally accrue from the orthogonality of the sine 

and cosine functions. 

vanish. 

harmonics would require recomputation of all coefficients of the normal 

equations. A similar effect is produced by the fact that the period con- 

tinuously changes. 

Consequently the sums of c ross  products no longer 

Furthermore, even if the period were fixed, the addition of higher 

These factors conspire to produce an enormous increase in the 

numerical work required because they lead to nondiagonal matrices of 

increasingly larger  size and to solutions by iterative procedures. 

2 -4. An Alternate Approach - Differential Corrections Scheme 

The method of searching for the minimum values of the sum of 

squares of deviations is quite awkward in the scheme just described. 

Furthermore the precision of the final value of the period is obtained from 

a questionable interpretation of equations (2  - 13) and ( 2  -14). 

The computation and interpretation can be made more direct by 

linearizing the problem in such a manner that a differential correction to 

the preliminary value of the period is explicitly included in the appropriate 

regression expression. 

equation (2  -5) in the following form 

For  this purpose it w i l l  be convenient to re-write 

sin mp ( t -  
0 0 I 
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where the factor 1/2 of equation (2-5) has been absorbed in A 

Assume now that an approximate value of T is available. 

and m = 2n /T. 
0 

This in turn 

implies that for any value of n approximate values of A , A1' B1' ... , A , B  n n  
a r e  available since they can be obtained by the straight forward application of 

the method of least squares as outlined in section 2-3. At this point one can 

ignore the fact that for a fixed n there is only one independent variable, namely 

T ,  and consider y. to be a function of A's ,  B's, and of m. 

more that the first estimate of T is sufficiently close to its true value so that 

the second and higher powers of the required corrections a r e  negligible, the 

Taylor's expansion of y.(A t A A  , ... A t AA , B t AB , ... m t Am) 

w i l l  yield 

Assuming further- 
1 

1 0  0 n n n  n 

o r  explicitly in terms of equation (2-15) 

Ayi = A A  0 t c o s [ m p ( t - t  0 ) sin [mp( t - to) ] ]  t 

s i n [ m p ( t - t ) ] t  B c o s [ m p ( t - t ) ] ( t - t ) A m  l o  (2-16) 
0 P 0 p=l  

The quantity Ay. i s  taken to represent the difference between the observed 

value of y and the value obtained from the first approximation. 
1 

Equation (2-16) i s  now taken as the new equation of condition in which 

the appropriate parameters A A  , . .. A m  w i l l  be estimated by the method 

of least  squares. 

estimates a r e  then used to produce improved values of the starting quantities 

A's and B ' s  

precision of the resulting value of T is obtained directly f rom the solution of 

normal equations. Note that 

0 

The corrections obtained from these linear regression 

a s  well a s  of the non-linear parameter T. The estimate of 
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. 

If now Am as computed from normal equations i s  given by 

A T  /Am/ = / a t  - SEh/ = m -  T 

then 
3 

The refore 

2 

SEAT = (-&T)SEAm 

This completes the discussion of the operations necessary to implement the 

iterative harmonic analysis method. 

22 



. 

3. DETERMINATION O F  PERIOD - ITERATIVE ANALYSIS O F  VARIANCE 

METHOD 

3 - 1. General Remarks 

The fact that the methods of sections 2-3 and 2-4 a r e  based on regres-  

sion analysis leads to a large number of computations which rapidly increase 

with both the order  of approximation n and the number of data points N. The 

difficulty is further compunded by the necessity of computing a large number 

of trigonometric functions. 

combersome and slow. 

A s  a result the required computations become 

The difficulties can largely be eliminated by the method based on the 

analysis of variance technique (e. g. Hoel, 1947, Brooks and Caruthers,  1953 

etc. ) 

To apply this method to  our case we attempt to group the available data 

in such a manner that the total sum of squared deviations can be analyzed into 

two components such that one of these w i l l  measure the variation of appropriate 

quantities between -che groups whereas the other measures the variation within 

the groups. This, of course, represents the basic idea behind the fundamental 

form of the analysis-of-variance technique. 

grouping is possible, and further,  that the component variances a r e  the statistical 

parameters  which permit one to make a decision concerning the periodicity of 

the phenomenon. This decision wi l l  be based on the fact that if the data contain 

a given period, the variance should exhibit a relative minimum for  this period. 

The practical implementation of this idea takes the following form: 

Let it be assumed that such a 

1. 

2. 

3. 

The computation starts by selecting an a rb i t ra ry  trial frequency 

o r  period. 

Al l  observations a r e  then reduced to a single cycle by the use of 

the assumed period. Effectively, this procedure t ransforms the 

original independent variable into a new one - the phase. 

The entire phase range is now arbitrari ly divided into a certain 

number of intervals, each interval containing a certain number of 

observations . 
23 



4. 

5. 

6 .  

7.  

We now compute the means and variances of each group. These 

w i l l  allow us to partition the overall variance into several com- 

ponents each of which can be utilized to obtain an independent 

estimate of the population variance of individual observations. 

We can now employ the F-test to ascertain whether the estimated 

variances a r e  significantly different. 

searching for systematic differences between the groups. 

For  a given grouping one expects significant differences between 

the groups whenever the value of the period under test is too far 

f rom its true value. 

variances i s  expected to be smaller than the overall variance. 

The difference between these can be systematic o r  it can a r i se  

by chance. 

significance . 
The entire procedure outlined above is repeated to cover the 

range of periods which are of interest. 

This procedure w i l l  indicate whether the data contains a true 

period in the neighborhood of the t ra i l  period. 

improved value a search is conducted over the region in question 

until the variance exhibits a minimum. 

This is  equivalent to 

Also, a s  shown later,  the sum of group 

A s  before, the F-test can be used to test for i t s  

To establish an 

3-2. Formal Description of the Method 

Consider for the moment the problem of data grouping. In particular 

consider a true sine wave defined by Figure 1. 

purposes the values of the period, the spacing interval between observitions, 

and the number of groups a r e  of no consequence. 

Note that for  illustrative 
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t*=O 

FIG. I GROUPING OF DATA 

Using the quantity q = (t  - t ) /P  to express the group limits a s  fractions of 

the period we can write down the following table 
0 

- Aq 

. 0 - . 1  

. 1 - . 2  

02-03  

0 . .  

... 
1.0 - 1. 

10 Aq 

0 - 1  

1 - 2  

2 - 3  

... 
0 . .  

(10-11) - O X P  

1.1 - 1.2 (11-12) - 10 X P  

1.2 - 1. 3 (12-13) - 10 x P 

Group Index (INDGR) 

0 

1 

2 

... 
0 . 0  

0 

1 

2 

... 0 . .  ... 
0 . .  ... 0 . .  

This table suggests the following rule for assigning a given observation to 

a particular class. 

observation as a fraction of the period and discard the characteristic, if 

any, of the resulting number. This converts the original variable into a 

new one - the phase. 

To obtain INDGR, express time associated with the 

Multiply the phase obtained in this manner by m, the 

number of groups into which the observations a r e  being assigned, and 
~ 
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discard the mantissa if any. The resulting integer is then used to denote 

the group index of the observation in question. 

It should be quite clear that the content of a particular group changes 

with the changing value of the period. 

12th points in Figure 1. Following the prescription outlined above one can 

produce the following schematic table summarizing the membership of the 

To clarify consider l s t ,  2nd, l l th ,  and 

points in question in the appropriate group. 

The varying content of groups, wi l l  of course, produce different group 

means and variances which in turn affect the partitioning of the overall 

variance. 

tions is random the assignment of a particular point wi l l  also be random. 

For  the time being we shall ignore the fact that in practice the observations 

may not be strictly random and that they may be influenced by systematic 

effects. 

It should also be noted that i f  the spacing.of the original observa- 

Let us assume now that we have effected classification of data 

according to the above rule. 

one. 

This will result in a table such a s  the following 
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I GROUP 11 
1 

2 

... X 

1 12 I n  
X 

11 

21 

X 

0 . .  X 
22 2 n, 

X X 

.. 
3 0 . .  X 

3 32 3n 
X 

31 
X 

... 

... 
... ... ... ... 
.e. ... 0 . .  ... 

Grand Mean 

m 

GROUP MEANS 

1 
- 
X 

X X X 
m l  m2 * * *  mn m 

- 
2 

3 

X 

- 
X 

... 
0 . .  

- 
X m 

- 
X 

The sum of the squared deviations from the grand mean for any 
n. 

i = l  4 
- 2  1 

given row is given by (x. - x ) . This quantity can also be expressed 

ni 2 
n. 
1 

- 2  
1 j=l  (3-1) 

- 
In the last t e rm the factor (G 
t e rm can be written a s  

- x) does not depend on j. Consequently this i 

ni n. 

However, 

n. n n 

j = l  l j  j=1 

- - - i i - 1 

(x. - xi) = G x. - x = a. x - n. x = o 
Ij j=1 i ~i i i  
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Consequently the third te rm in (3-1) vanishes and we have 

n. n- 

Fo r  each group there is an equation of this form. 

added together one obtains 

If all these equations a r e  

The left hand side of this equation represents the overall sum of squared 

deviations from the grand mean. 

variance 0 is given by the quantity 

Since the unbiased estimate of population 
2 

2 It follows that the left hand side of (3-3) is an estimate of ( N  - 1)O . 
n. 
1 * 

L - 
The quantity (x. - xi) represents the sum of n squared deviations 1j i j=1 

of observations of a given row about its own mean. 

of observations into rows is random each of the above sums represents an 

A s  long a s  the assignment 

m "i 2 - 2  
estimate of the quantity (n. - 1) (T . Consequently the quantity (x. l j  - X i )  

1 i=l  j=1 
i s  an estimate of 

2 2 
m 

i=l  
(n. - l ) U  = ( N - m ) O  

1 
( 3 -4) 

Let M now represent the population mean. 

right hand side of ( 3 - 3 ) .  

Consider the first t e rm on the 

This quantity can be re-written as follows 
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2 - m m 

i=l  i= 1 
n . (Zi  - - 2  x) - - 2 n. [(xi  - M) - (x - M)] 
1 1 

2 
m m 

i= 1 i- 1 

- 2 - m 

i= 1 
- - n . ( x i - M )  - 2 c  n i ( x i - M ) ( x - M ) - t - x  n . (X-M) 

1 1 

Since (x - M) is independent with respect to index i, the second te rm can be 

written a s  

m m ( m  m I  - 
nixi-M 

i=l i= 1 I - - 
-2 ni(Fi - M)(x  - M) = -2(T - M) 

i= 1 i= 1 
n.(xi-M)= 2 ( x - M )  
1 

(3-5) 

Note that since the sample mean is  defined as 

- m 
1 n. x. 

- i= 1 1 1  

N x =  

(3-5) becomes 

- ' 2  m 

i= 1 
-2 n.(x. - M) (x - M) = -2 (x - M) [NG -NM ] = -2N(x  -M) 

1 1  

Consequently we have 

m 

i=l 

- 2  
Consider now the expected value of n. (x - x )  . We have i i  

E[ i= 1 ni(xi  - ;)2] = E[ i= 1 n i (x i  - M)2] - E [2N(G - M)2]t E[: 1=1 ni(x - MI2] 

= m c n. E[(Gi-Mq-2NE[(G - M ) j  t "i.[i; - M)'] 

i=l i= 1 
29 ( 3  -6 )  



. 
At this point let us  invoke the following theorem (e. g. Hoel, 1947, p. 6 5 )  

Theorem: If x is normally distributed with mean M and variance U and 

random samples of size n are drawn, then the sample means 
2 x w i l l  be normally distributed with mean M and variance 0 /n. 

2 

- 

Note that x. is  based on n. observations and on N observations. The 

application of the above theorem to equation (3-6) yields the following 

expression 

1 1 

2 2 m 2 m 

i=l i= 1 
(7 0 

i= 1 

5 - 
- 2 N - +  C n - 

i N  i i  N 

= m u  2 - 2 0  2 2  t u  = ( m - 1 ) o  2 

(3-7) 

Consequently the two terms on the right hand side of (3-3) yield additional 

estimate s of population variance, namely, 

It must be noted (e. g. Caruthers and Brooks, p. 140; Kendall, 1950, 
3 3 
L 

and SL a r e  independent of each other although not 
'BG WG 3 3 

p. 507) that the estimates 
3 

of the estimate SL since the latter incorporates both SL 

fact is significant for the subsequent use of the F-test in ascertaining the 

existence of any systematic differences between the groups. 

and SL WG . This 
T BG 

2 
and S 

BG WG 
measuring the variation between groups The quantities S 

and within groups provide all the information necessary to ascertain the 

presence of a given period in the data under consideration. 

The convenient standard form of the analysis of variance for the case 

of a single independent variable is  summarized in the following table: 
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Sources of the Observed Sums of Squared 
Deviations and the Corresponding Expressions I 

Total Sum of Squared 
I 

Deviations 

I 

m ni - 2  
(x. - x )  = D T  

i=l j=1 1j 

- - 2  
Variation Between Groups n.(xi - X I  = DBG 

i=l 

- 2  m ni 
Variation Within Groups c (x.. -x.) =DWG 

i=l j=1 1J 1 

1 

Degrees of Estimates of 
Freedom Variance 0 2 

I 

1 - 1  
N - 1  1 S ; - -  - DT 1 

N-1 

It i s  of interest to note certain relations between the component variances a s  

well a s  to examine their behavior with changing period. 

found useful in practical computational schemes based on the present method. 

3 -3. Auxiliary Relations 

A. 

These relations w i l l  be 

WG Relation Between DT , DBG, and D 

It i s  immediately evident f rom equation (3 -3 )  that the total sum of 

squared deviations D 

in m groups D 

equals in value o r  exceeds the sum of squared deviations T 

WG. 
o r  the residual sum of squares D 

T 
Note furthermore that in the problem a s  

i s  not a function of T 

WG' 

BG 
Thus, in numerical work  D provides an upper limit which cannot be 

WG' 
exceeded by either D o r  D 

formulated here the total sum of squared deviations D 

This fact can be period. 

utilized to search for  the presence of a given period by examining the behavior 

o r  either D o r  D 

these functions. 

of the larger number of degrees of freedom associated with this quantity. 

BG 

The changes in the latter affect only D and D 
BG 

as a function of period and establishing the minima of 
BG WG 

In practical work one would favor the use of D because WG 

can be used to 
2 2 

and S 
BG WG 

It has already been mentioned that only S 

test  the significance of differences between the appropriate variance 

estimates. This is unfortunate since S 

small number of degrees of freedom unless the number of groups into which 

is associated with a rather 
2 
BG 
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2 
T the data is  classified is  taken deliberately large. 

2 
'WG 
against each other because they do not represent independent estimates of the 

population variance. 

The two variances S and 

possessing the largest numbers of degrees of freedom cannot be tested 

Generally the variance between the groups i s  larger than the variance 

within the groups with the exception of those cases  for which there i s  negative 

intraclass correlation (Kendall 1947, pp, 512-513). 

in practical work. 

value of F, F from the ratio 

Such cases  a re  rarely met 

Thus, with r a re  exceptions, w e  can compute the sample 

S' 

2 
DBG 

( m - 1 )  D W G  
. -  - 'BG ( N -  m) 

= s - - =  2 
'WG 

(3-8)  

is judged significantly 
2 
WG the difference between Sz and S s ' FC BG 

If now F 

different. If on the other hand F < F there i s  no reason to assume that the 

groups differ systematically from each other, 

value of F taken from the appropriate tables. 

S C 
Here F denotes the critical C 

The condition for acceptance or rejection of the hypothesis of no 

difference between groups can be put in the following convenient form 

o r  

In (3-9) the upper inequality sign applies to the case when the reduction in 

is not significant whereas the lower sign indicates a significant 
2 
WG 

and S DWG 2 
difference between S 

BG 
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B. Limiting Values of the Period 

F rom the ear l ier  discussion concerning the determination of group 

indices it i s  evident that the phase expressed a s  a fraction of period and 

restricted to the range 0 5 CP 2 1 can be written as 

t - t  

P 
0 

Cp = - - Char (3-10) 

In this expression t represents the value of the independent variable 

(e. g. time) associated with the given observation, t 

time, P is the period, and Char indicates that only the characteristic of the 

number enclosed in the parenthesis is  to be retained. 

i s  the arbi t rary reference 
0 

t - t  

P 
0 

The phase determined by equation (3-10)  w i l l  vanish whenever 

is exactly equal to its own characteristic that is whenever the mantissa of the 

resulting number i s  zero. 

of decimal digits in ( t  - t  ). 

If now P = 10 we have 

-k 
This w i l l  occur for P = 10 where k i s  the number 

For  example, let (t - t  ) be expressed a s  X.XXX. 
0 0 -3  

Cp = XXXX - Char (XXXX) = 0 

-k 
This situation w i l l  persist  for any value of P smaller than 10 

strictly adheres to the rules of retaining the proper number of significant 

figures in arithmetic operations. 

there w i l l  be values of P between 10 and 10 

yields phases having non-zero mantissas. 

problem of handling significant digits properly i s  a very inconvenient one 

and therefore it is generally ignored. Consequently phase computed by this 

means for periods less than 10 

of CP to depart f rom zero. 

and assume that the arithmetic i s  carried out properly. 

P 5 10 w i l l  yield zero value for CP and consequently our rule for  assigning 

data into classes  wi l l  force every point into one class whose index number i s  

provided one 

It is evident that if these rules a r e  violated 

for which equation ( 3 - 1 0 )  -k -(k + 1) 

In automatic computation the 

-k 
wi l l  exhibit fluctuations causing the value 

However, let us ignore this practical difficulty 

In this case every 
-k 
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zero. 

the remaining variance must be equal to the total variance. 

represents the upper limit of possible variances. 

w i l l  fail to produce any variation in D 

smaller than 10 . 
detected by the analysis of variance method. 

Therefore, all  c lass  variances vanish except one, and the value of 

The latter 

Evidently our procedure 

in response to periods o r  D GW WG -k 
Such periods, even should they exist, could not be 

The conditions specified above for assigning all observations into a 

single group a r e  not the only ones for which such a situation obtains. 

Note that the group index number INDGR i s  given by 

t - t  
0 

INDGR = Char(mcF) = Char - mchar(+)l (3-11) 

t - t  

P 
0 It i s  evident that Char - w i l l  vanish whenever P > Max 1 t - to I where 

Max 1 t - to \ denotes the largest of all  the differences (t - t ) which can be 

produced in the given data set. 
0 

Thus 

t - t  
0 

Char ( 
Max ( t  - t o \ +  6) = 

where € i s  arbitrari ly small. 

given by m ( t  - t ) where m is any integer larger  than unity. 

conditions (3-1 1) becomes 

Evidently this w i l l  also be the case for  any P 

Under these 
0 

m(t - t ) 
INDGR = C h a r  1 1 
This expression w i l l  consistently yield zero values for INDGR if the 

denominator P i s  qual to o r  exceeds the value given by 

P = m M a x  I t  - t o 1  
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This fact shows that there exists a maximum value of P beyond which all 

observations w i l l  be assigned to the Oth group and again it w i l l  be impossible 

to detect any changes in the component variances. 

of possible t r ia l  periods is restricted at both ends. 
2 2 

C. Behavior of Component Variances S and S BG 

Consequently the region 

WG 
2 
T The total variance S is not a function of period and therefore it w i l l  

and 
2 
BG remain constant throughout the analysis. 

A change 2 
'WG 
in these quantities can be effected only when at least  one of the x. ' s  switches 

However, the values of S 

w i l l  depend on the specific composition of individual groups. 

1j 
to a different group in response to  changes in the trial period. 

Consider now the behavior of INDGR (P) a s  given by equation (3-11). 

The variation of INDGR for m = 2 is exhibited in the following table. 

P 

.9(t  - t  ) 
0 

.8( t  -to) 

2/3(t  - t  ) 
0 

. 6 ( t - t  ) 

.55(t - t  ) 

.5(t  - t  ) 

0 

0 

0 

0 . .  

2 ( t - t  0 ) /P  I 2 Char (2) 1 INDGR 1 
2 2 I O I  

2 I O I  

2.5 2 0 

3 2 1 

3.332 I 2 

3.636 1 2 

4 4 0 

... ... ... 
It is apparent that for an observation at time t the index number 

INDGR remains constant in the intervals 
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2 / 4 ( t - t  ) <  P < 2 / 3 ( t - t  
0 0 

2 / 5 ( t  - t  < P < 2 / 4  ( t - to )  
0 

... 
Similar table for m = 3 shows that IND remains constant in the intervals 

0 . .  

3 / 4 ( t - t  ) <  P <  ( t - t o )  

3 / 5 ( t - t  )c P <  3 / 4 ( t - t o )  

0 

0 

... 
m m 

In general INDGR changes by 1 for P given by (t - to), 4 (t - to), 
m - (t - to) ,  etc. 5 
a s  

The above pattern indicates that these limits can be expressed 

m ( t  - t  ) 
0 - - 

limit. 
P (3-12) 

The above quantity yields the lower limit of the range within which 

INDGR remains constant. 

m(t - t  ) /Char m(t - t  )/PI. Thus, for a given t ,  the corresponding INDGR 

Clearly the upper limit i s  given by 

0 I o  
remains constant within the range 

m ( t - t  ) m(t - to) 
= PB 

m(t - t  ) > P  > 0 - 
- m(t - t  ) 

Char 1 1 Char 1 It 1 

(3-13) 

Within a given data set one expects to find one o r  more points which 

and similarly points which produce A’ P ~ ~ ~ ~ ’  yield the maximum value of P 
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1 . 
l -  

AMAX 
and 

BG 
This shows that the component variances exhibit 

BMIN < < , Within the range P B' P~~~~ the minimum value of P 

not a single observation changes i ts  group association and therefore S2 
2 

'WG remain constant. 

stepwise variation with P. 

D. Location of the Origin, t 
0 

Expression (3-13) indicates that for fixed values of m, t,  and P the range 

over which the component variances remain constant becomes smaller with 

increasing t , This is clear f rom the expression for A P  = PA - PB, namely 
0 

1 - 1 A P  = pA -PB = m ( t - t  ) [ C h a r [  m(t - t  ) I Char1  m ( t - t  ) \ + l ]  

For  large values of t ,1  << Char m(t - t o ) /P1  and furthermore 
0 I 

nume r ic  ally 

P2 m(t - t  ) m(t - t  ) 
0 . Consequently A P  sz Char [  I x m(t - t  0 ) 

The range in question can be made a s  small a s  desired by taking t 
0 

sufficiently large. 

a r e  constant is and SWG 
2 2 
BG 

Note now that i f  the range over which S 

wide the precision with which the period can be determined i s  low. 

that the difficulty can be alleviated by choosing to sufficiently large thus 

narrowing the range of constancy of the variances in question. A t  present i t  

i s  now clear whether the resulting improvement in precision of the computed 

period is real  o r  illusory, 

reference number t 

determined since the choice o f t  

tions used, their inherent precision, the length of the time interval covered, 

It appears 

Basically i t  is difficult to see why an arbi t rary 

should have any effect on precision with which P can be 
0 

does not influence the number of observa- 
0 
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o r  the computational technique employed. 

would be expected to  determine the precision of the final result. 

These a r e  the quantities which 

Finally, numerical tests had shown that the depths of the minima of 

function which was chosen as  the indicator of periodicity a re  the SWG 

functions of m, the number of classification groups. 

the shallower is the given minimum. 

2 

The smaller this number, 
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4. TESTING O F  METHODS 

The techniques described in section 2 and 3 have been tested 

numerically by means of computer programs written for the IBM 1620 data 

processing system. 

were intended only for testing the essential features of the proposed methods, 

and therefore cannot be considered a practical computing tool for l a r g e  scale 

data processing by these methods. 

so far can serve as the basis for the preparation of practical programs. 

It must be emphasized that the three programs used 

However, it i s  believed that the work done 

Both versions of the iterative harmonic analysis method were tested 

by applying it to a light curve of the VW Cephei eclipsing system as observed 

by K. K. Kwee at the Leiden Observatory. These observations a re  shown 

in Figure 2. 

were selected for processing. 

should be noted that if one hopes to determine the period of length P the data 

must cover an interval at  least that long. 

To avoid unnecessarily lengthy computations, only 54 points 

These points a r e  shown by open circles. It 

The reference time w a s  arbitrarily taken a s  JD 2436232.2904 and the 

starting value of the period was estimated from the plot of the light curve a s  

JD 0.276. 

It was found that for n = 1 the first version of the iterative harmonic 

analysis method diverged, indicating that observation cannot be adequately 

represented by a simple sinusoid. 

the fairly complex nature of the curve. 

This i s  not an unexpected result considering 

The iterative process for n = 2 was found to converge, although slowly. 

Repetition of these computations for n = 3,4,  and 5 indicated that the 

las t  significant improvement occurs f o r  n = 4. 

The value of the period obtained a t  this stage i s  equal to .278387 days 
- 5  

and is associated with a standard e r ror  of 1.261 x 10 

claimed value determined from observations covering many periods i s  

.27831 days (Kwee 1958, Kopal 1956) with the sixth figure being uncertain. 

This i s  a reasonable agreement despite the fact that the observational material  

employed w a s  vastly different. 

days. The commonly 
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. 

The differential correction modification of the above method when 

applied to the same set of data, shows much the same behavior. Thus, the 

iteration with n = 1 was found to diverge. 

values exhibit convergence in fewer iteration steps, but the overall computing 

time increases due to the larger number of coefficients involved in the process. 

Computations with successive n 

Clearly the two procedures must exhibit the same termination point. 

Fo r  n = 4, the last significant improvement in data representation occurs. 

period corresponding to this approximation level i s  .278377 days with a standard 
-3 

e r r o r  of 1.458 x 10 . Thus, the results produced by these two versions a re  

practically the same. From the numerical point of view the differential co r -  

rection procedure appears to offer little advantage over the unmodified version 

which requires fewer computational steps per iteration. 

The 

Numerical testing of the iterative analysis of variance method proved to be 

more difficult primarily because of different observational requirements. 

iterative harmonic analysis method appears to be applicable to data covering 

itervals not much longer than a full period. 

approach proved ineffective under these conditions. 

latter method appears to improve steadily with the increasing length of the 

data record. 

The 

However, the analysis of variance 

The performance of the 

h 
In the VW Cepei case, shown in Fig. 2 ,  this method started yielding 

results comparable to those of the harmonic analysis method only when the 

iterval covered by observations reached a value of 3 to 4 periods. 

sequently the test problem as  presently formulated required 150 to 200 points. 

Unfortunately these were not available in one unbroken sequence and for this 

reason had to be taken from different, rather widely separated cycles. The 

above circumstances indicate that the comparison of the two methods by the 

use of the same data set  covering the same overall interval i s  not possible. 

L 

Con- 

. 

Numerical work with this method revealed all features claimed for  

it in section 3 particularly with regard to the behavior of the component 

variance S in response to changes in P, m, and t . In addition a dis-  

turbing feature came to light, namely, the presence of spurious periods. 

2 
WG 0 
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The true period i s  always found in association with the deepest and 

However, the present test revealed 
2 
WG' probably the absolute minimum of S 

that other minima exist in the neighborhood of the deepest one and that such 

minima a r e  not associated with real  periods. 

presence or  absence of the spurious minima appear to depend at  least on m, 

the number of classification groups. 

The depth, location, and 

It must be emphasized that the testing to which this method has been 

subjected is insufficient to have revealed other hidden features which m a y  be 

p r e  sent. 
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. 
5. CONCLUDING REMARKS 

The present work resulted in two possible methods of determining 

unknown periods of cyclic phenomena which a re  observed at  irregular time 

intervals. The computational feasibility of each has been demonstrated by 

numerical tests. 

different ways in which the minimum variance i s  sought. 

analysis method the least squares technique i s  used to minimize the residual 

variance in response to the number of harmonics used and to changes in the 

period. 

becomes concerned with the non-linear regression analysis of irregularly 

spaced observations. For these reasons the computational aspects of the 

problem become very cumbersome. Furthermore the method i s  suitable 

for the determination of only the fundamental period and it is not capable of 

revealing periods which a re  not related harmonically. 

has the advantage of yielding useful results from very short runs of data. 

The basic differences between the methods stem f rom the 

In the harmonic 

Since the latter enters the analysis nonlinearly the whole problem 

However, this method 

The second method is based on the standard analysis of variance 

technique for a single variable. 

variances i s  minimized as a function of the period. From the computational 

point of view this method i s  very desirable because it involves only the basic 

arithmetic operations in the sense that no special functions need be computed, 

no matrices formed and inverted, etc. However, theoretically this method 

contains a greater number of loose ends than the f i rs t  method. 

prominent among these a re  the questions associated with the choice of m and 

t 

In this method one of the component 

Most 

a s  well a s  the problem of what interactions give r i se  to spurious periods. 
0 

Finally in both methods one is  faced with the troublesome questions of 

convergence of the iterative process and the nature of the solution obtained. 

These problems have been considered in the literature to a limited extent for  

the non-linear regression analyses (e. g. Hartley 1961). 

to this writer problems of the latter type have not been considered for  the 

analysis of variance technique. 

A s  far as it i s  known 
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